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We consider the model problem of mass transport by diffusion with chemical reaction at a 
moving boundary. The objective is to model the chemical process by predicting the location of 
the boundary as the reaction proceeds in time. A finite element analysis is formulated in one 
dimension using moving elements to follow the boundary motion, and an iterative 
linearization method is developed to uncouple and solve the diffusion and reaction equations. 
The semidiscrete system for the transport process is integrated using a predictor-corrector 
scheme and its accuracy and stability are examined in numerical experiments. Numerical 
results are compared with an analytic solution for the quasi-steady case in which diffusion is 
very rapid in comparison to reaction and to a perturbation solution for the unsteady case. 
Other supporting numerical studies are made to examine the sensitivity of the solution and 
boundary motion to changes in diffusion and reaction rate for both linear and nonlinear reac- 
tions. c’ 1988 Academc Press, Inc. 

Many chemical processes involve a reaction occurring at the interface between 
two phases (see Bird et al. [ 11). An example is the oxidation of silicon used in 
semiconductor processing. A primary objective in engineering design studies is to 
predict the location of the interface, or moving boundary, as the reaction proceeds 
in time. In the example of combustion of a solid particle, it is desired to know the 
time required for the particle to react completely. Numerical simulation provides 
the most realistic approach to solving these types of problems due to their com- 
plexity: analytic solutions appear feasible only in one-dimensional and symmetric 
two-dimensional cases under certain assumptions on the relative rate of reaction as 
compared to diffusion (see Deal and Grove [4] for a discussion of silicon oxidation 
and Glassman [6] for application to coal combustion). 

There are two important special cases of the general problem that need to be 
mentioned. One is the limiting case of an instantaneous reaction, described 
mathematically by the classical Stefan problem. There is an extensive literature on 
the Stefan problem for heat transport with phase change (see Cannon [2] and 
Friedman [S]). It should be emphasized that the mathematical structure of this 
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problem is special because the reaction kinetics do not explicitly appear in the 
model, and is therefore usually distinguished from the more general problem involv- 
ing kinetic rate boundary conditions considered here. The second special case, 
called the quasi-steady approximation, arises when diffusion is very rapid in com- 
parison to reaction. This situation occurs frequently in applications such as silicon 
oxidation and provides a useful comparison test case for numerical methods. 

In the present study, we consider mass transport with reaction at a boundary, for 
a representative class of one-dimensional problems. A finite element method is 
developed for the numerical solution of the model problem with the aim of 
predicting the location of the moving interface as the reaction proceeds in time. 
Thus, the problem is intrinsically a transient one, and moving finite elements 
provide a promising approach because the mesh can be easily made to tit the boun- 
dary configuration and allowed to stretch in response to boundary motion. 
Numerical studies are used to ascertain the effect of diffusion and reaction on the 
boundary motion and transport process. Time-step refinement studies are perfor- 
med to determine the sensitivity of the method to the choice of time step and 
accurately determine the solutions. Comparison studies with an analytic solution 
for the quasi-steady case are used to assess numerically the accuracy and stability of 
the method. 

THE MODEL PROBLEM 

Governing Equations 

Consider an isothermal chemical reaction A + B + C in which species A diffuses 
through the layer of product C to react at the surface of reactant B (see Fig. 1). 
Component B is impervious to the diffusing species and is converted to product C 
in the reaction. At the “free” surface of C, the concentration of A is known; at the 
interface between B and C, the mass flux of A is equal to the reaction rate which is 
a function of the concentration of species A. 

We seek to model the transport of species A through the product layer and the 
movement of the reacting boundary. The associated mathematical model for this 
process consists of two coupled time-dependent differential equations. First, there is 
the diffusion equation for species A with reaction at a boundary x = s(t) 

p&O 0 < x < s(t), 0 < t 5 T 

40, t) =f(t) OstgT (2) 

-9 g (s(t), t) = k r(u(s(t), t)) O<tiT (3) 

4x9 0) =4(x) O$xSb=s(O) (4) 
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FIG. 1. Reaction at a boundary. 

and, second, a nonlinear ordinary differential equation characterizing the motion of 
the boundary 

NS(t)=kr(u(s(t), t)) OjtiT (5) 

s(O) = 6, (6) 

where u(x, t) is the concentration of species A, 9 is the diffusivity, k is the reaction 
rate coefficient, N is the mass of reaction, f(t) is a prescribed interface concen- 
tration, 4(x) is the initial concentration, and s(t) is the position of the moving 
boundary. The domain in (x, t) space is illustrated in Fig. 2. Both equations are 
coupled together through the unknown boundary position s(t). For reaction rate 
T(U) = U, the boundary condition (3) is linear and the reaction is first order; 
T(U)= U* corresponds to a second-order reaction and a nonlinear boundary 
condition. The solution is given by the pair (u, S) satisfying (l), (5) together with 
boundary conditions (2) (3) and initial conditions (4) (6). 

Variational Problem 

There are several ways in which a variational statement of the problem may be 
constructed. The approach we consider is quite straightforward and easily utilized 
in a finite element analysis. Let 52(t) be the spatial domain 0 5 x 5 s(t) at any time f. 
Integrating by parts the weighted integral of (1) on Q(t), we obtain 

s s(t) (z4~u+%4,u,)dx-9l4,0 = 0, Q(t) 0 

where u is the test function (weight function). 

FIG. 2. Domain for the model problem in (x, t) space. 
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Using (2) and (3), u(O)=0 and -9~ ,=kr(u) at x=s(t). Then from (7) the 
variational problem is to find u(x, t) satisfying the initial data and essential boun- 
dary condition, such that 

I (u,u + 9u,u,) dx + k r(u(s(t), t)) u(s(t)) = 0 (8) R(f) 

for all admissible test functions u. Here, s(t) is not known a priori but is to be deter- 
mined concurrently as the solution of (5) (6); that is, of 

N S = k r(u(s( t), t)), s(O) = 6. (9) 

Transformation techniques may be applied to accommodate the moving boundary 
effect and to adjust the finite element mesh adaptively in the following approximate 
analysis as in Mueller and Carey (8). Introducing the transformation x = ~(5, r), 
t = r, the time derivative becomes, on using the chain rule, inverse map, and trans- 
posing, 

where V(x, r) = ax/& is the velocity of point (x, z) in the domain Q(r). Thus, the 
effect of the transformation is to introduce the addition convective term - V(au/ax) 
in the differential operator to account for the domain deformation. In the present 
case, the boundary motion is specified as the solution of (9) with V(s(r), z) = S and 
we allow points in the interior to move proportionally so that V(x, T) = (x/s) S (e.g., 
see Lynch [7]). 

Substituting (10) in (8), the transformed variational integral is 

I (u,u - Vu, u + 9au,u,) dx -+ kr(u(s(T), t)) u(s(t)) = 0, (11) 
Q(r) 

where s(t) is related to u by (9). 

Approximate Formulation 

Let Q,(t) denote the finite element discretization of the domain and {1+5~} the 
finite element basis so that the finite element expansion has the form 

uh(x, T, = f uj(T) $j(x). (12) 
j= 1 

Setting uh in (12) for u and u,, = tii for u in (11) yields the semidiscrete system of 
ordinary differential equations 
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MB-Cu+Au+q(u)=O 

u,(7) = u(.y(7), 7), 

(13) 

(14) 

where C depends on V(x, 7) and qi = k I 6,) Kronecker delta 6,. 
In the solution algorithm, we have adopted the strategy of iteratively separating 

the calculation of u, s, and V. Initially, u, s, and hence V are known. Using this 
initial value of I’, assumed constant through the first time step, the system 
(13)-(14) may be solved iteratively. To integrate (13)-(14), we have chosen 
backward differencing of u and either forward or midpoint differencing of S. An 
iterative uncoupling of the two equations is achieved by lagging the nonlinear term 
in (14) one time step and predicting the moving boundary position s at time t + dt 
using information about u at time t; V is updated using u at the end of the step. A 
more sophisticated method would be to retain a stronger coupling by alternately 
predicing and correcting for s. These predictor-corrector integration methods and 
the associated linearized equations are explained in more detail during the dis- 
cussion of numerical results. 

Nondimensionalization and the Quasi-Steady Case 

Introducing the dimensionless quantities 

u*=U -7 x*=X 
1’ 

t* =I 
t) 

s* =s 
u I’ 

the nondimensional form of (l)-(6) becomes (dropping the asterisk) 

au a% 
C(z--Q=Oo, 0 < x < s(t), 0 < t s T (15) 

4-J t) =fw OstsT (16) 

-E(s(t), t)=Bir(u(s(t), t))=PS(t) O<tsT (17) 

4% 0) = d(x) Osxsb, (18) 

where a = 12/G27, the Biot number Bi = klj9, /I = N12/ii9c p= f/ii, and 6 = @Iii. The 
quantities 1, i, and ~2 denote characteristic length, time, and concentration, respec- 
tively. Note that for a first-order reaction r(u) = u, if Bi + co the reaction condition 
--au/ax = Bi u can be replaced by the condition u = 0 at x = s(t), yielding the 
classical Stefan problem. 

When diffusion is very rapid in comparison to reaction, transient delay is 
negligible in the diffusion process. The concentration u(x, t) still remains a time- 
dependent function, but only on account of the changing domain. During a small 
time increment 6t as the boundary advances from s(t) to s(t + dt), the concentration 
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distribution essentially adjusts itself instantaneously to the new domain without any 
transient delay. Mathematically, this condition is achieved in the limit as a + 0 with 
Bi//? < co. For this quasi-steady case, the nondimensional equations (15~( 18) 
become 

a% 
s=o O<x<s(t), 0< t5 T (19) 

u(0, t) =fit) OgtsT (20) 

-~(s(r),t)=Bir(u(s(z), t))=flS(t) O<tsT (21) 

4x,0) = 6(x, Osxsb. (22) 

The analytic solution for (19)(22) in the case of a first-order reaction r(u) = u and 
f(t) constant, say p= 1, is 

u(x, t) = 1 - 
Bi 

1 +Bis(t)X (23) 

s(t)=i[ 1+2Bi((Bi//?)t+b+$Bib’)-11. (24) 

The large and short time asymptotic behavior of s(t) is of particular interest and 
can be easily deduced from (24): For large time (t 5> /?/2Bi2) 

whereas, for small times (t 6 &2Bi*), 

s(t)KEt+b+iBib’. 
B (26) 

Note that 3 + 0 and s -+ cc as t --* co. In the chemical engineering literature, the 
quantities (2/b)(/*/i) and (Bi/B)(//i) are called the parabolic and linear rate 
constants, since they determine the respective asymptotic square root and linear 
growth rate of s(t). 

NUMERICAL STUDIES 

Solution Methods 
Numerical studies are performed on the model problem (15k( 18) with T(U) = U, 

f(t) = 1, J(x) = 0, and b = 1. A n accurate spatial approximation of u is achieved by 
using 10 quadratic elements on the interval x = 0 to x = s(t). The resulting semi-dis- 
crete system given by (13 )-( 14) is integrated from t = 0 to t = T, time evolution of 
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FIG. 3. Time evolution of (u(x. t), S(I)) through an interval Af. 

the solution (u, S) through a time step At is schematically illustrated in Fig. 3. Com- 
putational experience shows that overall accuracy in one-dimensional problems is 
limited by the accuracy of time integration; therefore, we focus on this aspect of the 
approximation. The integration of ti and i are coupled through the reaction rate 
term in (14) which is implicitly a function of u and S. We iteratively uncouple the 
equations by alternately solving (13) and (14) where #(s(t), t) in (14) is determined 
from a prior solution of (13). An implicit method (backward differencing) for the 
integration of (13) is used because explicit methods place too stringent a stability 
restriction on the time step-much more than that required for the integration of 
(14). 

A predictor and a predictor-corrector method are used to integrate (14) and 
their performance compared. The predictor method is given by 

s”+’ = s”+ A+(u”(s”)), 
P (27) 

where the superscripts denote the time level and At the time step size. This method 
utilizes information about u at time t to predict the boundary position at time 
t + At and is therefore explicit. Alternatively, we can use information about both un 
and u”+’ to compute s”+‘. One such approach is a predictor-corrector method 

s;+l= sn + At?’ + I”, (28) 

where $‘+ ‘I* is a midpoint approximation to the boundary velocity given by 

s en + l/Z = + (yl + “; i- 1). (29) 

A predicted position s;+ ’ is first computed from (27), then (28b(29) applied to 
yield the corrected position given by 

sz+‘= s”+~;[r((U”(S”))+r(UH+ys;+‘))]. (30) 

This algorithm is illustrated schematically in Fig. 4. Note that u”+ ‘(SF+ ‘) appears 
in (30), requiring an integration of ti in advancing from sn to s;+ l. When a correc- 
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(n+ 

FIG. 4. Predictor-Corrector method for advancing the boundary. 

ted position S, n+ ’ has been determined, a new integration of ti is then performed 
from S” to ~;+l. With zP+‘(Y+l) now obtained, the predictor-corrector process is 
repeated for the next time step. 

Given a computed 5, whether at a predictor or corrector step, a stretching trans- 
formation advances all other nodes inside the domain by an amount proportional 
to their distance from the moving boundary. Nodal velocities are then used in the 
calculation of the convection matrix C in (13) to account for a changing domain 
through the time step. 

Parametric Studies 

In the numerical studies, we experiment with the predictor and predictor- 
corrector methods for integration of i(t), ascertain the sensitivity of the method to 
the choice of time step, verify accuracy by comparison with the quasi-steady 
analytic solution, and assess the influence of variations in a, Bi, and fl on the 
motion of the boundary. 

In the model problem (15k(lS) with a first-order reaction, data was taken to be 
f= 1, b = 1, and 4 = 0. To approximate closely the quasi-steady case, nondimen- 
sional parameters were chosen as CI = 0.001, Bi = 1, and /I = 1. Convergence to the 
quasi-steady analytic solution with time step refinement is shown in Fig. 5, in which 
the boundary position s(t) is plotted as a function of time. Integration of S was per- 
formed by the predictor method. The boundary concentration u(s(t), t) is plotted as 
a function of time in Fig. 6 for the same set of data. It is seen that large time steps 
produce significant errors in the boundary concentration for short times which 
eventually diminish with U(S) + 0 as t + 00. However, the initial errors in u(s(t), t), 
being proportional to i(t), cause significant errors in the computation of s(t) that 
remain through time. Therefore, accurate time integration throughout is required 
even if the solution is desired only at some large time. 

A comparison was made between the predictor and predictor-corrector methods 
again for the case 01 = 0.001, Bi = 1, and /I = 1. Convergence to the quasi-steady 
solution for s(t) is illustrated in Fig. 7, and indicates that much larger time steps 
can be taken with the predictorcorrector method versus the predictor method to 

5X1/74/2-13 
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ALPHA = 001 BI = 1. BETA = 1. 

FIG. 5. Convergence of computed boundary position to the quasi-steady solution with time-step 
refinement (predictor method). 

TIME 

FIG. 6. Convergence of computed boundary concentration to the quasi-steady solution with time- 
step refinement (predictor method). 
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ALPHA = ,001 BI = 1. BETA = 1. 
I I 1 I I 

14.00- 

12.00- 

8.00- 

FIG. 7. Comparison of predictor (P) and predictor-Corrector (P-C) method for convergence of 
computed boundary position to the quasi-steady solution. 

achieve equivalent accuracy. However, more computational effort per step is 
required and this must also be considered when choosing an integration method. 

To assess the convergence and stability of the predictor method for the time- 
dependent model problem, the effect of time-step refinement on the computed 
boundary position s(t) and concentration &r(t), t) is evaluated. The parameters in 

ALPHA = 1. BI = 1. BETA = 1. 
I 1 I I I 

0. 

TIME 

FIG. 8. Effect of time-step refinement on computed boundary concentration. 



450 MURRAY AND CAREY 

ALPHA = 1. BI = 1. BETA = 1. 
r- I I I --T 

i 

FIG. 9. Effect of time-step refinement on computed boundary position. 

the model are now chosen as CI = 1, Bi = 1, and /I = 1, which produce appreciable 
changes in u(s(t), t) and hence, changes in s(t), over the time of integration. For an 
initial concentration of zero, the differential equation for s(t) is stiff for short times 
during which the boundary concentration rapidly increases until it begins slowly 
depleting due to reaction (see Fig. 8). The diffusion process wants to raise the con- 
centration to a steady state value, while the reaction process seeks to deplete mass 
through reaction at the boundary. The combined effect of the two processes with 
widely different time scales produces a stiff region for short times, necessitating the 
use of very small time steps for acceptable accuracy (see Fig. 8). 

For the range of time steps considered, all solutions are stable in the sense that 
the computed boundary position is neither diverging from the exact position nor 
oscillating between overshoot and undershoot. (The latter situation is frequently 
encountered in numerical approximation of Stefan problems.) Using a predictor to 
integrate S(z) would tend to overshoot the exact boundary position and, as the 
computations show, remain that way. Applying a corrector tends to reduce the 
amount of overshoot since the resulting midpoint approximation of s(t) is more 
accurate than the forward-Euler approximation of the predictor. On the basis of 
physical reasoning, if the computed boundary position is larger than the exact 
position, the resulting velocity decrease (3 -+ 0 as t + co) would tend to prevent 
instability by slowing down a boundary advancing too rapidly. 

The effect of variations in a, Bi, and /I on s(t) is illustrated in Figs. 10-12. 
Decreasing c1 toward zero while holding Bi and /I constant (Fig. 10) approaches the 
quasi-steady situation. If instead, Bi is increased while holding c1 and j3 constant 
(Fig. 1 l), we approach a diffusion-controlled situation in which the motion of s(t) is 
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BI = 1.0 BETA = 1. 0 
I I I I I I 1 , 

12.00 I 
lO.OO- 

oz 
r B.OO- 
5 D 

$ 6.00- 
m 

4.001 

I 1 I I I 1 
0.0 20.0 40.0 60.0 so. 0 100.0 

TIME 

FIG. 10. Effect of variations in CL on computed boundary position. 

limited by the amount of mass reaching the boundary. The concentration u(s(t), t) 
is nearly zero in this situation. Further increasing Bi results in negligible change in 
s(t) since most of the mass at the boundary has been depleted, leaving little 
additional mass for an increased reaction. Finally, increasing b while holding a and 
Bi constant (see Fig. 12) slows down the motion of the boundary. Hence, the 
limiting situation of /? + 00 degenerates to S(t) = 0, or no boundary motion. 

0.00~ I I I I I 20.0 40.0 60.0 80.0 100.0 
TIME 

FIG. 11. Effect of variations in Bi on computed boundary position. 
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5.00t 
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FIG. 12. Effect of variations in /? on computed boundary position. 

We have discussed above the quasi-steady case (tl=O) and compared the 
associated analytic solution with numerical results obtained for a small. In fact, for 
a = E, 0 <E+ 1 a regular perturbation analysis may be introduced to obtain an 
asymptotic expansion for u and s in E. In this analysis, the problem domain is first 
transformed to a fixed domain by the time-dependent transformation < = x/s(t) and 
the perturbation expansions for u and s introduced in the transformed problem. 
The formal analysis is similar to that in Carey and Murray [3] for the analogous 
problem in spherical geometry called the “shrinking core” model. Matching terms 
to first order in E, the two-term perturbation approximation to the boundary 
position is, for the case Bi = 1, /I = 1, f= 1, and b = 0, 

s(r)=%(l) +=1(t), (31) 

TABLE I 

Comparison of Finite Element and Perturbation Solutions of s(r) at I = 20 for 
Various Values of the Perturbation Parameter (Bi = 1, B = 1, s(O) = 0) 

Perturbation Parameter 

0.1 0.5 1.0 

Perturbation solution 5.35877 5.18135 4.95958 
Finite element solution 5.35995 5.20483 5.04239 
Quasi-steady approximation 5.40312 5.40312 5.40312 
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where s,(t) is the quasi-steady solution 

and s,(t) is the solution of 

s,(t) = JiTz - 1 (32) 

(1 + so)3 s1 + (1 + So) Sl + f Sf, s, = 0, s,(O) = 0 (33) 

and is evaluated numerically. Results for the quasi-steady solution, perturbation 
solution and finite element solution are compared in Table I for several values of E. 
The perturbation solution provides valid results for E sufficiently small, but the 
finite element analysis is quite generally applicable and may, of course, be extended 
to include the case of a nonlinear reaction as indicated next. 

Consider the model problem (15)-( 18) with a second-order reaction rate 
r(u) = u*. The contribution of this boundary condition to the approximate for- 
mulation (q(u) in (13)) is nonlinear and the resulting nonlinear algebraic equations 
may be solved by the method of successive substitution. To do this, we approximate 
the boundary condition as 

q;+‘=kr(u,) A ku;u;+‘, (33) 

where i denotes the iteration number in the successive substitution method. 
Iteration continues until the difference between successive iterates of U, is less than 
a specified tolerance. 

Computational results for the second-order rate equation may be compared with 
those obtained using a first-order rate for the parameters a = 1, Bi = 1, /I = 1,3= 1, 

ALPHA = 1.0 BI = 1.0 BETA = 1.0 
I I 1 1 I 1 I 1 

FIG. 13. Computed boundary concentration for lirst- and second-order reaction rates. 
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.O”t .ooc 
ZndORDER REACTION 

/ii/l 00 

L .OO 0 I, 
.O 20.0 40.0 60.0 60.0 100 

TIME 

-I 
.O 

FIG. 14. Computed boundary position for first- and second-order reaction rates. 

4 = 0, and b = 1 and some interesting points emerge. A tolerance of 0.1% is used for 
the nonlinear iteration and convergence obtained in one to three iterations per time 
step. In particular, we observe that the concentration at boundary x = s(t) (Fig. 13) 
for the second-order reaction is higher than that for the first-order reaction. This 
implies that more mass is available for the reaction, However, since the boundary 
velocity is proportional to the square of the concentration, 

i(t) = ff u(s(t), ty 
P 

and u(s(t), t) < 1, so it is plausible that the rate of chemical conversion is less than 
that obtained with a first-order reaction. This has been verified in the numerical 
results (Fig. 14); thus, the domain grows more slowly for this particular nonlinear 
reaction. 

CONCLUDING REMARKS 

We have considered the problem of diffusion with reaction at a moving boundary 
and developed a finite element method employing a moving mesh and iterative 
linearization of the coupled nonlinear system of equations. Computations perfor- 
med in one dimension illustrate the effectiveness of the method and uncover impor- 
tant physical aspects of the solution behavior related to the effects of diffusion and 
reaction. The quasi-steady case is examined because of its importance in many 
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physical phenomena and the fact that it admits a simple analytic solution. This 
solution is included and used in the supporting verification studies for the 
approximate method and solution procedure. 

Often, the medium through which diffusion occurs is a fluid and, in two-dimen- 
sional problems, may be in motion due to volume expansion, buoyancy, forced 
convection, or other effects. The problem then becomes a coupled fluid flow and 
transport problem with reaction at a boundary. We are presently investigating this 
case for reaction at a fixed boundary [9]; future studies will be directed toward the 
solution of two-dimensional coupled problems with reaction at a moving boundary. 
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